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ABSTRACT: Biofilms are biological systems that are formed by a
community of microorganisms in which microbial cells are
connected on a surface within a self-produced matrix of an
extracellular polymeric substance. On some occasions, micro-
organisms use biofilms to protect themselves against the harmful
effects of the host body immune system and the surrounding
environment, hence increasing their chances of survival against the
various anti-microbial agents. Biofilms play a crucial role in
medicine and industry because of the problems they cause.
Designing agents that inhibit bacterial biofilm formation is very
costly and takes too much time in the laboratory to be discovered
and validated. Therefore, developing computational tools for the
prediction of biofilm inhibitor peptides is inevitable and important.
Here, we present a computational prediction tool to screen the vast number of peptide sequences and select potential candidate
peptides for further lab experiments and validation. In this learning model, different feature vectors, extracted from the peptide
primary structure, are exploited to learn patterns from the sequence of biofilm inhibitory peptides. Various classification algorithms
including SVM, random forest, and k-nearest neighbor have been examined to evaluate their performance. Overall, our approach
showed better prediction in comparison with other prediction methods. In this study, for the first time, we applied features extracted
from NMR spectra of amino acids along with physicochemical features. Although each group of features showed good discrimination
potential alone, we used a combination of features to enhance the performance of our method. Our prediction tool is freely available.

■ INTRODUCTION
According to the National Institutes of Health (NIH), about
80% of bacterial pathogen form biofilms.1 These highly
adhesive populations are associated with a great number of
health problems because of two major reasons: first, about 65%
of all human microbial infections and near 80% of chronic
infection are caused by these biofilms and second, their strong,
protective, and multicellular structure make them up to 10−
1000 fold more resistant to the hosts’ defense systems and
traditional antimicrobials than planktonic bacteria.2

Formation of these adhesive population of different
microorganisms including bacteria, archaea, fungi and protists
is at the root of many serious chronic infections.3 This sessile
community of different microorganisms is able to grow on a
diverse range of biotic and abiotic surfaces. This ability helps
them to be created in a variety of environments.
The formation of a biofilm is a complex process and consists

of five steps. In the first stage of formation, planktonic bacteria
using van der Waals powers or flagella which is a weak,
reversible adhesion are absorbed into a surface (reversible
connection). This phase is mainly related to the capacity of
microbes to interact and cooperate through quorum sensing
(QS) with other cells, which microbes do by releasing and
responding to small diffusible signal molecules. In the second

stage, hydrophobic forces between the bacterium and
extracellular matrices increase, when bacterial appendages
overcome physically repulsive forces, resulting in the decreased
repulsion between them (irreversible attachment). This
irreversible attachment is due to the bacteria being able to
secrete a complicated range of extracellular polymeric
substances, including proteins, polysaccharides, and DNA. In
the third phase, through cell division, the biofilm rises when
colonization has started the biofilm (proliferation). The matrix
of previous species in the colony can then be adhered to by a
few microbial species that do not have the capacity of
attachment. Maturation is the final stage of biofilm develop-
ment. During this stage, through certain physiological
modifications in form, size, efflux pumps, oxygen gradient,
division of labor, and so forth, the biofilm becomes more
specialized. Microbial colonies are able to become antibiotic-
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resistant when the biofilm is fully developed. Bacteria acquire
the capacity to spread and colonize new substratum in a critical
phase of biofilm formation (dispersal). Different variables
control this significant step, including shear stress or enzymes
that degrade the extracellular matrix, such as dispersion B and
deoxyribonuclease. Some anti-biofilm agents are needed to
stop the impact of microbes’ multicellular mode lifestyle
(biofilm).3

In recent years, a large number of infections caused by
organisms that are resistant to drugs appeared as a direct
consequence of widespread use of antibiotics. These problems
motivate studies in the field of antimicrobial peptides (AMPs)
to produce viable alternatives for current antibiotics.4 AMPs,
also called host defense peptides, attracted researchers’
attention, and scientists have developed various AMPs. The
interest in AMPs for the treatment of the biofilm has increased
in recent decades. To be more exact, the types of AMPs that
can prevent the formation of the biofilm around bacteria
through the aforementioned processes are called biofilm
inhibiting peptides (BIPs).
The effects of BIPs on different types of microorganisms

have already been investigated in several kinds of studies.
Accordingly, the anti-biofilm agents can carry out various
actions such as targeting the QS signaling molecules,
extracellular polymeric substance matrix, genes involved in
biofilm formation, adhesion, and so forth.5,6 In a study by
Batoni et al., it has been verified that BIPs can be proper
alternatives to conventional antibiotic treatments.7

The current focus is on implementing methods that are able
to synthetize more potent biofilm inhibitory peptides.
Metagenomics is a rapidly growing field of research that
studies uncultured organisms to know the real variety and
functions of microbes.8 Because of advances in next-generation
sequencing technology, we are now able to reconstitute
complete or draft genomes from metagenomic sequences.9,10

Because sequences extracted from different microbial environ-
ments such as soil, water, ancient remains of animals, or the
digestive systems of animals and humans are good candidates
for the extraction of different bioactive peptides, such as BIPs,
an approach that can reduce the number of candidate
sequences for experimental validation is in high demand in
metagenomics.11−13

Advances in computational tools based on amino acid
sequences have greatly influenced the peptide research field.
Currently, there are a variety of sequence-based predictors for
different classification tasks in a wide range from AMP
prediction14 up to the prediction of anti-cancer15,16 and QS
peptides.17 These sequence-based techniques can be useful in
identifying the best candidate BIPs in a wet-lab prior to
synthesis and testing against pathogens. Computational tools
like BIOFIN18 and dPABBs19 have been developed for the
prediction of BIPs. Both of them use BaAMPs, which is a well-
known database containing experimentally validated BIPs
(http://www.baamps.it/), to create a positive data set.20 In
BIOFIN, random forest (RF) and SVM learning techniques
were employed for the prediction of BIPs, based on the
different composition features of peptides. dPABBs employs
amino acid compositions (AACs) for learning the SVM and
RF-based classifier models.
Although, the aforementioned methods have played an

important role in gaining knowledge to predict BIPs, the
prediction accuracy needs to be improved in order to minimize
the number of false positives and access better BIP candidates
for experimental validation. In addition, for machine learning
tasks, feature representation is fundamentally important for
improved performance. Using a good feature combination will
enable capture of the characteristics of data and support
effective machine learning. The present study aims to develop
a computational approach to more accurately predict anti-
biofilm peptides. To the best of our knowledge, in the current
work for the first time, combinations of different descriptors,
such as the composition, transition, and distribution (CTD) of
different features besides the newly introduced NMR-based
features were used to map peptide sequences to numeric
feature vectors as the input for prediction methods. The
proposed approach was found to perform better than several
existing approaches for predicting BIPs.

■ RESULTS AND DISCUSSION

Compositional Analysis. We used a histogram to display
the average AAC of the two groups (BIPs and non-BIPs)
(Figure 1). As one can see in the figure, BIPs had more
numerous positively charged residues (K, H, R), while the
non-BIPs had more negatively charged residues (D, E).

Figure 1. Comparison of the average AAC between two classes.
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Additionally, the number of large amino acids (F, R, W, Y) in
the BIP group was significant, whereas the tiny amino acids (A,
C, D, G, S, T) were mainly found in the non-BIPs. These
results indicate the importance of using the physiochemical
features in the training process of our machine.
We conducted dipeptide compositional analyzes between

BIPs and non-BIPs to understand dipeptide residue preference.
Analysis of DPC revealed that 54 out of 400 possible
dipeptides differed considerably between BIPs and non-BIPs
(Welch’s t-test; P-value 0.01). Of these, RI, IR, KK, RV, RR,
WR, RW, VR, KR, RK and LF, FF, SL, LS, FT, SF, TQ, FN,
SG, TF were the top 10 most abundant dipeptides in BIPs and
non-BIPs. Figure 2 reveals, significantly, DPC between BIPs
and non-BIPs.
Feature Extraction and Feature Selection. A total of

1024 features were obtained for the peptides of both groups
from the PyDPI package and IAMPE tool. Table 1 presents all

the feature vectors used in this study, along with the number of
features in each group. For detailed information about each of
the feature vectors, see Supporting Information.
Only 980 features were associated with the separation of our

classes after t-test analysis. These 980 features were considered
the inputs for the REF algorithm and SelectKBest from the
scikit-learn package of Python. Finally, 150 best features were
obtained for our data. We moved across a different number of
features, from 100 to 200 features, and the most optimal results
for our method were reached, when we choose 150 features.
Most of the features were from the CTD group (108 features).
Twelve features were from the NMR set. Nine features were
selected from the AAC group. Thirteen features were chosen
from DPC. Finally, only eight features were selected from the
PCP group. These 150 features are listed in Table S5.
An interesting analysis was conducted to demonstrate that a

combination of different features along with NMR feature set

leads to better results. In this analysis, the SVM machine was
trained separately for each attribute group on first independent
data set (including 20 positive and negative samples). The
predicted class for all samples in the independent data set was
extracted. Because the actual class of this test data set was
available, we were able to examine the strength of various
features. The diagram in Figure 3 presents the number of
samples found correctly by each feature.

Model Evaluation with Different Classifiers. Table 2
shows the performance of different classification models for
our data. For evaluation of the models in the sense of TP rate
(sensitivity) and FP rate (specificity), receiver operating
characteristic (ROC) curves were plotted using an Orange
Version 3.11.0.A ROC curve is a graphical plot that
demonstrates the ability of a binary classifier system when its

Figure 2. Comparison of the average dipeptide AAC between two classes.

Table 1. Presentation of Different Feature Vectors Used in
This Study with the Number of Generated Features in Each
Set

feature sets AAC DPC CTD PCP NMR total
number of generated
features

20 400 504 15 40 979
Figure 3. Power of various features in the right prediction of samples
in the first independent data set.

Table 2. Performance Evaluation Metrics with Different
Classification Models Based on the Best 150 Features
Selected

methods accuracy sensitivity specificity AUC

RF 0.87 0.87 0.87 0.90
kNN 0.88 0.88 0.88 0.90
Naiv̈e Bayes 0.85 0.87 0.85 0.91
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discrimination threshold is diverse. Figure 4 represents ROC
curves for models used in BIPEP.

SVM Model Based on the Selected Feature. The most
important features were selected for the SVM model (rbf
kernel with cost = 0.1). We assessed the performance of SVM
using five-fold cross validation. In fact, we ran our models with
90% data as a train set and 10% data as a test set, and ran this
step 150 times. As illustrated in Figure 5, different evaluation
parameters were calculated in all runs. The average values of
the different performance metrics are listed in Table 3.

Comparative Analysis. The performance of our SVM
model, with a combination of different compositional feature
sets and NMR features, was compared with the performance of
the latest BIP prediction tools. Two independent data sets
were used to judge the prediction ability of our method
compared to existing approaches. Table 4 presents the
evaluation parameters for various predictive tools. The results

demonstrate that our model is more efficient in predicting
biofilm inhibitory peptides. Moreover, to avoid a biased
comparison toward selecting specific training data sets, the
training sets of BioFIN and dPABBs have been used to
compare the prediction power of BIPEP with two other
models. As illustrated in Table S9, BIPEP was found to
perform better predictions than the dPABBs and the BioFIN in
terms of all performance metrics. This finding supports the
hypothesis that a combination of different feature sets to
makeup a feature space consisting of optimal relevant features,
will lead to better results.

Online Prediction Server. The developed user-friendly
web-server is accessible at http://cbb1.ut.ac.ir/BIPClassifier/
Index. This service will be able to obtain single or multiple
peptides to calculate a wide variety of features that were
mentioned in this paper. Moreover, the classifier service can
exploit these features to predict whether each peptide has a
biofilm inhibition property. All results that are represented in
this section have been extracted using this web server.

■ DISCUSSION
BIPs are natural peptides that have been attracting a great deal
of attention in recent years because of their ability to eliminate
biofilms.3 These peptides naturally code in many micro-
organisms. On the other hand, metagenomic samples contain a
diverse community of bacteria, protozoa, fungi, and archaea,
which are potentially a great source of BIPs. However, the
main obstacle in analyzing these samples is the amount of data
and difficulty of handling this data without a powerful
computational tool to reduce the number of candidates for
experimental validation.
In this paper, we have described a computational tool that

can be used to predict biofilm inhibitory peptides. As was
mentioned before, identifying and designing BIPs using
experimental approaches is time consuming and costly. The
identification of BIPs with computational tools is important in
order to reduce appropriate candidates for experimental
validation and helpful to biological labs. The current research
describes a computing technique based on SVM that can
predict BIPs more accurately than previously reported
methods.
In this investigation, all available sequences of BIPs have

been used to create our positive data set20,21 and Quorum

Figure 4. Ability of various binary classifier systems in term of ROC
curves.

Figure 5. Comparison of various evaluation parameters was calculated
in all runs for the five-fold cross-validation method. The red points in
the figure illustrate the distribution of the different performance
measures in the 150 runs.

Table 3. Comparison of Different Evaluation Metrics in a 5-Fold Cross Validation Method

evaluation parameters accuracy sensitivity specificity F1-score MCC AUC
five-fold cross validation 0.95 0.97 0.96 0.97 0.89 0.96

Table 4. Evaluation Parameters Value Among Various BIP
Predictive Tools on Our First Independent Data set

independent
data set

predictive
tools

sensitivity
(%)

specificity
(%)

accuracy
(%)

MCC
(%)

first
independent
data set

dPABBs 70 100 85 33.33

BioFIN 0 100 10 0
our model 90 90 90 80

second
independent
data set

dPABBs 94.44 81.25 88.82 77.19

BioFIN 0 100 42.55 0
our model 98.14 85 92.55 85.03
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sensing peptide (QSP) peptides were used to construct the
negative data set.19 When we compared two data sets with
respect to their AAC, it became apparent that positively
charged amino acids like K, H, and R are more abundant in
BIPs. A previous study by Segev-Zarko et al.35 showed that
peptides rich in the number of Leu (K) and Lys (L) exhibit
potential inhibitory activity against biofilms. Cationic residues
assist BIPs to act against their target correctly. For instance,
peptide’s biofilm inhibitory activity against its target will
decrease by replacing cationic residues with an acidic residue.36

Preparing a computational approach to predict biofilm
inhibitory peptides was a great challenge for two reasons. First,
the number of experimentally validated BIPs is limited.
Second, these peptide sequences have a variety of lengths
and primary structures. Thus, we could not make proper
predictions simply according to features based on the
composition of different amino acids. In this work, a
combination of features was used to map sequences onto
feature vectors, which were subsequently used as inputs in
SVM for the prediction of BIPs. For the first time, the CTD of
different features and features based on NMR was used for
prediction. These feature sets, along with AAC, DPC, and
physiochemical features, led to the creation of our final feature
space, which consists of 108 CTD, 12 NMR, 9 AAC, 13 DPC,
and 8 PCP. The absence of each of them would change our
final result.
As illustrated in Figure 3, all features have the ability to

separate two data sets, but merging these feature sets helped us
achieve the most optimal results. For example, the machine
learned with DPC, has the ability to predict all BIPs correctly
but is unable to predict non-BIPs. On the other hand, the
SVM-based model, which trained with the NMR feature set,
was effective in predicting BIPs and non-BIPs, but had true
negatives and false positives, which were corrected with other
feature sets. These results support our hypothesis that using
multiple sets of attributes leads to better results. With the
exception of AAC and DPC, the rest of the selected feature
groups in this study were used for the first time in BIP
prediction. On the other hand, different classifiers were used in
this study, but the SVM-based model displays good perform-
ance as compared to kNN-, Naiv̈e Bayes-, and RF-based
models.
In the present study, we introduced features based on NMR

spectra for the first time and investigated their importance in
BIP prediction. Although these features alone did not provide a
good separation between the two classes (BIPs and non-BIPs),
the synergistic combination of this new feature set with other
features improved the predictive power of the BIPEP tool. As
illustrated in Figure 3, NMR features have an additive effect on
other features in the data set that increase the predictive power
of the tool. In fact, without using these features, we would have
misidentified the number of peptides in the non-BIP class.
Moreover, in our web server, the user can easily compute
NMR features for other classification tasks in different scopes.
This feature can be exploited in a variety of applications that
need predictions based on amino acid sequences.
The performance of our BIP prediction model was also

compared to two other BIP prediction servers (BioFIN and
dPASBBs), two validation data sets were made and used for
comparison. Our model was found to achieve higher accuracy
than the two other methods. This result might be due to the
use of a combination of different feature sets and the making of

a feature space with the optimal relevant features from a
diverse composition of measures.

■ CONCLUSIONS
Biofilms are known for causing different microbial diseases.
These highly structured communities are resistant to various
antibiotics, so designing new BIPs is extremely necessary.
However, designing BIPs using laboratory methods takes a
great amount of time and is a difficult task. Reducing the
number of BIPs for experimental validation with computational
tools effectively decreases the time and cost. Developing a
prediction tool for BIPs was a challenging work because of a
small number of experimentally validated BIPs. Despite this,
this study used a combination of different feature groups and
selected associated attributes with different feature selection,
improving results. From another perspective, metagenome
environments are excellent candidates for extracting different
types of bioactive peptides, but screening these environments
is not an easy task because of the vast volumes of data. The
method presented in this study can be used and significantly
reduces the number of potential candidates for laboratory
work. Moreover, the webserver for this tool is available on
http://cbb1.ut.ac.ir/BIPClassifier/Index and can supplement
existing tools/techniques in predicting BIPs.

■ MATERIALS AND METHODS
Data Set Preparation. Positive Sets. To construct the

positive data set, sequences of anti-biofilm peptides have been
gathered from databases that are publicly accessible. A total of
202 unique peptides were downloaded from the BaAMP
database,20 a comprehensive database of BIPs and APD3,21

another database of BIPs. Figure 6 provides a summary of the
positive data sets.

Negative Sets. QSPs were selected for constructing the
negative data set based on the method explained in ref 19.
Quorum-sensing peptides are oligopeptides secreted by Gram-
positive bacteria into the extracellular space, thus enabling
bacteria to form the biofilm. The 88 non-anti-biofilm peptides
that make up the negative database of the dPABBs tool were
retrieved from http://ab-openlab.csir.res.in/abp/antibiofilm/
and used to form our negative data set. In order to have the
same number of positive and negative peptides, the synthetic
minority oversampling technique was performed to oversample
the minority class.22

Data set Construction for Independent Validation. We
needed to develop an approach to compare our method with
the existing prediction tools, dPABBs and BioFIN. The
comparison was made through the construction of two
validation data sets from positive and negative peptides,

Figure 6. BaAMP and APD3 data set used for constructing our
positive data set. As shown in the figure, these two data sets had 12
peptide intersections.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://dx.doi.org/10.1021/acsomega.9b04119
ACS Omega 2020, 5, 7290−7297

7294

http://cbb1.ut.ac.ir/BIPClassifier/Index
http://ab-openlab.csir.res.in/abp/antibiofilm/
https://pubs.acs.org/doi/10.1021/acsomega.9b04119?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.9b04119?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.9b04119?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.9b04119?fig=fig6&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://dx.doi.org/10.1021/acsomega.9b04119?ref=pdf


which do not exist in the train data set of our models, and two
other methods that we wanted to compare.
Two different independent data sets were used for

comparison with existing methods. The first independent
data set is the same data set used in dPABBs (contains 10 BIPs
and 10 non-BIPs). CD-HIT23 (with −c 1.0, means 100%
identity), confirmed that these 20 data points do not exist in
the training set of BioFIN (Table S6). We conducted a
literature survey to obtain more biofilm inhibitory peptides for
validation. In a study done by Hancock et al.24 a QSAR model
was used to predict BIPs and compare their prediction with
experimentally validated BIPs. We used this experimental
validation data set as a positive set for our second independent
data set for validation of the presented model and comparison
with other methods. To increase the number of negative data
sets, QSPs were selected for this purpose. QSPs are
oligopeptides used as auto-inducing molecules by Gram-
positive bacteria in intraspecies QS that are known to enable
the biofilm phenotype. A total of 80 unique QSPs were
retrieved from the QSPpred web server to generate positive
(training + independent) data sets. The CD-HIT tool
confirmed (with −c 0.8, means 80% identity) that these 108
positive data points and 80 negative data points don’t have
similarity values higher than 80 percent identity to the training
set of our model (Table S7).
Moreover, the performances of these methods were

compared in terms of their sensitivity, specificity, accuracy,
and Mathew’s correlation coefficient (MCC) values for the
two data sets.
Feature Extraction. Peptide sequences must be mapped to

numeric feature vectors before being used as inputs in
supervised learning classifiers. In this study, many different
categories of features, including AAC, dipeptide composition-
DPC and others, were used. These feature sets have been used
for binary classification in different studies.14,15,25−27

In addition, based on the CTD of different features (polarity,
polarizability, molecular weight, etc.),28,29 physicochemical and
nuclear magnetic resonance (NMR) features, the correspond-
ing feature vectors were extracted for the prediction of BIPs.
All of the features, except NMR, such as the physiochemical
features (PCP) were computed with PyDPI, a free python
package for extracting variety of features from protein and
peptide sequences.30 The physicochemical and NMR features
were computed using the IAMPE web tools available at http://
cbb1.ut.ac.ir/FeatureCalc/Index.
Feature Selection. Feature selection or variable selection,

as a preprocessing stage, was the method used to select a
subset of relevant features (variables, predictors) for model
construction. Because of the importance of this step, we used
several methods. We performed both the filter base method
and the wrapper method for this step. Finally, the intersection
of features that were reported by both methods was used for
further analysis.
First, we trained our machine with all features separately.

For example, the AAC feature was calculated for our data and
then the SVM was used to investigate the performance of the
machine for this feature set. These steps were repeated for all
five group of features (AAC−DPC−PCP−CTD−and NMR
features) (Table S8), which were extracted in the previous
step. Then, we used a t-test-based selection method to
determine which features separated the two class with a p-value
smaller than 0.05. Among 1024 features, only 980 features
aligned with these data. We then used recursive feature

elimination (RFE) and SelectKBest from the scikit learn
package in python to draw out the features that contributed
the most out of the BIPs that correlate strongly to the
classification variable. RFE is a feature selection method that
fits a model and removes the weakest features until the defined
number of features is achieved. In the SelectKBest method,
features are chosen according to the highest k scores. To
overcome any bias toward a specific split of training and testing
data sets, this step was conducted to evaluate different data set
splitting (100 splits). As a result, the intersection of features
selected with two various methods comprise our feature space.

Construction of Machine-Learning-based Prediction
Models. Support Vector Machine-based Prediction. A
support vector machine is a supervised model which is used
for classification tasks. Because of the small size of our data set,
it was better to use a nonparametric method. Thus, we have
therefore used SVM to predict BIPs because it is a
nonparametric method and the most commonly used
supervised learning technique.14,18,19,27,31 This kernel based
classification algorithm forms a decision surface between
positive and negative data to classify samples. According to the
kernel structure, a linear or nonlinear hypersurface may
discriminate between classes. Polynomial and radially basis
functions are among the powerful nonlinear kernels. SVM
classifier prediction capacity relies primarily on the type of
kernel function selected to map the input information to the
feature space. Because of the importance of choosing the
optimal kernel and other appropriate parameters for the SVM
base model, we applied a Grid search for the different amounts
of SVM parameters. Grid-searching refers to the process of
scanning data to configure optimal parameters for a given
model.

RF-based Prediction. RF or random decision forest is an
ensemble learning method that employ hundreds or thousands
of independent decision trees to perform classification and
regression.32,33 A detailed description of the RF algorithm has
been reported elsewhere.34

The prediction ability of RF mainly depends on the three
most important parameters of this classifier (i.e., the number of
trees, number of attributes considered at each step, and the
minimum number of samples required to split an internal
node). By using a grid search upon these important variables,
we are able to optimize their values.
Moreover, we examined other nonparametric classifiers, k-

nearest neighbor (kNN) and Naiv̈e Bayes for BIP prediction.
However, the SVM still performed better than the others, so it
was chosen as a classifier for our machine.

Cross-Validation Measure. In statistical prediction, cross-
validation methods are often used to examine a predictor for its
effectiveness in practical application. We used five-fold cross-
validation to evaluate the performance of the predictive model
used in this study. In the five-fold cross-validation, the whole
data set is randomly split into five sets, out of which one set
(test) is tested by a model developed on the remaining four
sets (training). This process is then iterated 150 times.

Performance Evaluation. We evaluated the performance
of our model using several metrics. We used sensitivity,
specificity, accuracy, and MCC to evaluate the performance of
the proposed model as calculated by the following formulae

=
+

×Specificity
TN

FP TN
100
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=
+

×Sensivisity
TP

TP FN
100

= +
+ + +

×Accuracy
TP TN

TP FP TN FN
100

= −
[ + ][ + ][ + ][ + ]

×

MCC
(TP)(TN) (FP)(FN)

TP FP TP FN TN FP TN FN

100

where TP and TN are correctly predicted positive and
negative examples, respectively. Similarly, FP and FN are
wrongly predicted positive and negative examples, respectively,
and MCC is the Mathew’s correlation coefficient.
Data Availability. An open source for both positive and

negative data sets that related to this study hosted at (http://
cbb1.ut.ac.ir/datasets/negative_data.txt), (http://cbb1.ut.ac.
ir/datasets/positive_data.txt) and (http://cbb1.ut.ac.ir/
datasets/independent_data.xlsx).
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